首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288098篇
  免费   26502篇
  国内免费   16449篇
电工技术   44165篇
技术理论   35篇
综合类   30333篇
化学工业   18764篇
金属工艺   10038篇
机械仪表   21802篇
建筑科学   27918篇
矿业工程   10943篇
能源动力   19218篇
轻工业   6742篇
水利工程   8080篇
石油天然气   8840篇
武器工业   4559篇
无线电   28557篇
一般工业技术   18641篇
冶金工业   10065篇
原子能技术   3542篇
自动化技术   58807篇
  2024年   494篇
  2023年   3324篇
  2022年   5862篇
  2021年   7486篇
  2020年   8108篇
  2019年   6338篇
  2018年   5655篇
  2017年   7651篇
  2016年   9020篇
  2015年   10061篇
  2014年   18632篇
  2013年   16465篇
  2012年   21443篇
  2011年   22975篇
  2010年   17567篇
  2009年   17658篇
  2008年   17527篇
  2007年   21737篇
  2006年   19140篇
  2005年   16699篇
  2004年   13753篇
  2003年   12309篇
  2002年   9570篇
  2001年   8056篇
  2000年   6655篇
  1999年   5270篇
  1998年   3973篇
  1997年   3193篇
  1996年   2910篇
  1995年   2468篇
  1994年   2045篇
  1993年   1451篇
  1992年   1184篇
  1991年   906篇
  1990年   733篇
  1989年   615篇
  1988年   454篇
  1987年   271篇
  1986年   176篇
  1985年   214篇
  1984年   186篇
  1983年   146篇
  1982年   145篇
  1981年   97篇
  1980年   96篇
  1979年   68篇
  1978年   47篇
  1977年   39篇
  1976年   26篇
  1959年   24篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
32.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
33.
猪肉是我国消耗量最大的肉类品,尤其是冷鲜猪肉更受人们青睐。猪胴体冷却保鲜加工工艺既要满足优质猪肉的成熟条件,又要保证猪肉的安全卫生。猪胴体冷却温度和降温速度对保证加工工艺合理性和降低耗能都至关重要。在实测数据基础上经过判断、分析提出,在常规0~4 ℃冷却前先在-10~-5 ℃低温快速冷却猪胴体1 h从而更好地保证猪胴体的冷却效果。实验发现:猪胴体开始冷却时,内部温度先有2~4 ℃的升温,然后才会降温,因此需对热负荷计算进行修正;根据两段冷却过程中猪胴体的冷却降温特点,提出了对应的冷量要求,为配备冷却装置提供了依据。  相似文献   
34.
At present, as the demand for electricity increases in all sectors, there is an urgent need to introduce alternative renewable energy sources into modern energy systems. Renewable energy sources, which consist of solar (photovoltaic, PV), wind and hydro power, are key alternative sources of “green energy’’ energies, but it can also be used to produce “green” hydrogen. Thanks to scientific and technological progress, the cost of photovoltaic solar radiation converters is constantly decreasing at a high rate, which makes it possible to build solar power plants of sufficiently large capacity. In the coming decades, solar energy will become an incentive for the economic development of countries that have the maximum “solar” resource. The Republic of Tajikistan is one of these countries with a high potential for solar energy.The article presents an analysis of the resources and potential of solar energy in the Republic of Tajikistan. The study of electromagnetic transients in networks with photovoltaic solar power plants is performed. The main equations, simulation model and calculations of transients are presented, taking into account changes in voltage on DC buses. An algorithm for controlling the system of automatic control of output parameters is proposed. The analysis of dynamic and static modes in parallel operation of a solar power plant with the grid is carried out. A block diagram and computer model is constructed in the MATLAB package together with Simulink and Power System Blockset.  相似文献   
35.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
36.
黄惠兰  文翔  李刚  汤维 《太阳能学报》2022,43(2):373-379
以H型垂直轴风力机及其内含圆柱形实体为研究对象,对NACA0018翼型的五叶片H型垂直轴风力机的气动性能进行数值模拟和实验验证。分析8种不同直径的内含圆柱体,在内含实体截面积占风轮迎风面积之比分别为21.2%、50.0%和76.9%时,风力机风能利用率的峰值分别下降8.04%、20.7%及74.3%。结果表明:随着内含实体直径的增大,风能利用率的峰值逐渐减小,开始较为缓慢,达到一定值时快速下降。小直径内含实体主要影响叶片在下风区的转矩,对风能利用率的影响较小,而大直径内含实体还会影响叶片在上风区的转矩,其风能利用率迅速减小。对于内含固定直径的实体,比如在现有建筑物外侧安装风力机时,其风轮半径的选择需综合考虑风能利用率和风力机的建造成本两方面的因素。研究结果可为建筑物与垂直轴风力机进行有效结合以提高风能的利用提供参考。  相似文献   
37.
As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the hydrogen production and operating voltage of the PEMEC at various Exchange Current Densities (ECDs). Furthermore, the effect of integration of Phase Change Material (PCM) and Thermoelectric Generator (TEG) on the hydrogen production of the system is evaluated. According to the obtained results, the PVT-TEG-PEMEC system outperforms other systems in hydrogen production. However, integration of the PVT-PEMEC system with PCM has a negligible effect on its hydrogen production.  相似文献   
38.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
39.
During the hot summer season, using electricity systems increases the local anthropogenic heat emission, further increasing the temperature. Regarding anthropogenic heat sources, electric energy consumption, heat generation, indoor and outdoor heat transfer, and exchange in buildings play a critical role in the change in the urban thermal environment. Therefore, the Weather Research and Forecasting (WRF) Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment. Through the building effect parameterization (BEP) of a multistorey urban canopy scheme, a building energy model (BEM) to increase the influence of indoor air conditioning on the electricity consumption system was proposed. In other words, the BEP+BEM urban canopy parameterization scheme was set. High temperatures and a summer heat wave were simulated as the background weather. The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer. During the day, the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city, whereas at night, the air temperature generally increases by 0.6 ℃, especially in densely populated areas, with a maximum temperature rise of approximately 1.2 ℃ from 22:00 to 23:00. When the indoor air conditioning target temperature is adjusted to 25–27 ℃, the total energy release of the air conditioning system is reduced by 12.66%, and the temperature drops the most from 13:00 to 16:00, with an average of approximately 1 ℃. Further, the denser the building is, the greater the temperature drop.  相似文献   
40.
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号